opentelemetry.io/content/en/docs/languages/python/getting-started.md

837 lines
25 KiB
Markdown

---
title: Getting Started
description: Get telemetry for your app in less than 5 minutes!
weight: 10
# prettier-ignore
cSpell:ignore: debugexporter diceroller distro loglevel maxlen randint rolldice rollspan venv werkzeug
---
This page will show you how to get started with OpenTelemetry in Python.
You will learn how you can instrument a simple application automatically, in
such a way that [traces][], [metrics][], and [logs][] are emitted to the
console.
## Prerequisites
Ensure that you have the following installed locally:
- [Python 3](https://www.python.org/)
## Example Application
The following example uses a basic [Flask](https://flask.palletsprojects.com/)
application. If you are not using Flask, that's OK — you can use OpenTelemetry
Python with other web frameworks as well, such as Django and FastAPI. For a
complete list of libraries for supported frameworks, see the
[registry](/ecosystem/registry/?component=instrumentation&language=python).
For more elaborate examples, see [examples](/docs/languages/python/examples/).
## Installation
To begin, set up an environment in a new directory:
```shell
mkdir otel-getting-started
cd otel-getting-started
python3 -m venv venv
source ./venv/bin/activate
```
Now install Flask:
```shell
pip install flask
```
### Create and launch an HTTP Server
Create a file `app.py` and add the following code to it:
```python
from random import randint
from flask import Flask, request
import logging
app = Flask(__name__)
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
@app.route("/rolldice")
def roll_dice():
player = request.args.get('player', default=None, type=str)
result = str(roll())
if player:
logger.warning("%s is rolling the dice: %s", player, result)
else:
logger.warning("Anonymous player is rolling the dice: %s", result)
return result
def roll():
return randint(1, 6)
```
Run the application with the following command and open
<http://localhost:8080/rolldice> in your web browser to ensure it is working.
```sh
flask run -p 8080
```
## Instrumentation
Zero-code instrumentation will generate telemetry data on your behalf. There are
several options you can take, covered in more detail in
[Zero-code Instrumentation](/docs/zero-code/python/). Here we'll use the
`opentelemetry-instrument` agent.
Install the `opentelemetry-distro` package, which contains the OpenTelemetry
API, SDK and also the tools `opentelemetry-bootstrap` and
`opentelemetry-instrument` you will use below.
```shell
pip install opentelemetry-distro
```
Run the `opentelemetry-bootstrap` command:
```shell
opentelemetry-bootstrap -a install
```
This will install Flask instrumentation.
## Run the instrumented app
You can now run your instrumented app with `opentelemetry-instrument` and have
it print to the console for now:
```shell
export OTEL_PYTHON_LOGGING_AUTO_INSTRUMENTATION_ENABLED=true
opentelemetry-instrument \
--traces_exporter console \
--metrics_exporter console \
--logs_exporter console \
--service_name dice-server \
flask run -p 8080
```
Open <http://localhost:8080/rolldice> in your web browser and reload the page a
few times. After a while you should see the spans printed in the console, such
as the following:
<details>
<summary>View example output</summary>
```json
{
"name": "/rolldice",
"context": {
"trace_id": "0xdb1fc322141e64eb84f5bd8a8b1c6d1f",
"span_id": "0x5c2b0f851030d17d",
"trace_state": "[]"
},
"kind": "SpanKind.SERVER",
"parent_id": null,
"start_time": "2023-10-10T08:14:32.630332Z",
"end_time": "2023-10-10T08:14:32.631523Z",
"status": {
"status_code": "UNSET"
},
"attributes": {
"http.method": "GET",
"http.server_name": "127.0.0.1",
"http.scheme": "http",
"net.host.port": 8080,
"http.host": "localhost:8080",
"http.target": "/rolldice?rolls=12",
"net.peer.ip": "127.0.0.1",
"http.user_agent": "curl/8.1.2",
"net.peer.port": 58419,
"http.flavor": "1.1",
"http.route": "/rolldice",
"http.status_code": 200
},
"events": [],
"links": [],
"resource": {
"attributes": {
"telemetry.sdk.language": "python",
"telemetry.sdk.name": "opentelemetry",
"telemetry.sdk.version": "1.17.0",
"service.name": "dice-server",
"telemetry.auto.version": "0.38b0"
},
"schema_url": ""
}
}
{
"body": "Anonymous player is rolling the dice: 3",
"severity_number": "<SeverityNumber.WARN: 13>",
"severity_text": "WARNING",
"attributes": {
"otelSpanID": "5c2b0f851030d17d",
"otelTraceID": "db1fc322141e64eb84f5bd8a8b1c6d1f",
"otelServiceName": "dice-server"
},
"timestamp": "2023-10-10T08:14:32.631195Z",
"trace_id": "0xdb1fc322141e64eb84f5bd8a8b1c6d1f",
"span_id": "0x5c2b0f851030d17d",
"trace_flags": 1,
"resource": "BoundedAttributes({'telemetry.sdk.language': 'python', 'telemetry.sdk.name': 'opentelemetry', 'telemetry.sdk.version': '1.17.0', 'service.name': 'dice-server', 'telemetry.auto.version': '0.38b0'}, maxlen=None)"
}
```
</details>
The generated span tracks the lifetime of a request to the `/rolldice` route.
The log line emitted during the request contains the same trace ID and span ID
and is exported to the console via the log exporter.
Send a few more requests to the endpoint, and then either wait for a little bit
or terminate the app and you'll see metrics in the console output, such as the
following:
<details>
<summary>View example output</summary>
```json
{
"resource_metrics": [
{
"resource": {
"attributes": {
"service.name": "unknown_service",
"telemetry.auto.version": "0.34b0",
"telemetry.sdk.language": "python",
"telemetry.sdk.name": "opentelemetry",
"telemetry.sdk.version": "1.13.0"
},
"schema_url": ""
},
"schema_url": "",
"scope_metrics": [
{
"metrics": [
{
"data": {
"aggregation_temporality": 2,
"data_points": [
{
"attributes": {
"http.flavor": "1.1",
"http.host": "localhost:5000",
"http.method": "GET",
"http.scheme": "http",
"http.server_name": "127.0.0.1"
},
"start_time_unix_nano": 1666077040061693305,
"time_unix_nano": 1666077098181107419,
"value": 0
}
],
"is_monotonic": false
},
"description": "measures the number of concurrent HTTP requests that are currently in-flight",
"name": "http.server.active_requests",
"unit": "requests"
},
{
"data": {
"aggregation_temporality": 2,
"data_points": [
{
"attributes": {
"http.flavor": "1.1",
"http.host": "localhost:5000",
"http.method": "GET",
"http.scheme": "http",
"http.server_name": "127.0.0.1",
"http.status_code": 200,
"net.host.port": 5000
},
"bucket_counts": [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
"count": 1,
"explicit_bounds": [
0, 5, 10, 25, 50, 75, 100, 250, 500, 1000
],
"max": 1,
"min": 1,
"start_time_unix_nano": 1666077040063027610,
"sum": 1,
"time_unix_nano": 1666077098181107419
}
]
},
"description": "measures the duration of the inbound HTTP request",
"name": "http.server.duration",
"unit": "ms"
}
],
"schema_url": "",
"scope": {
"name": "opentelemetry.instrumentation.flask",
"schema_url": "",
"version": "0.34b0"
}
}
]
}
]
}
```
</details>
## Add manual instrumentation to automatic instrumentation
Automatic instrumentation captures telemetry at the edges of your systems, such
as inbound and outbound HTTP requests, but it doesn't capture what's going on in
your application. For that you'll need to write some
[manual instrumentation](../instrumentation/). Here's how you can easily link up
manual instrumentation with automatic instrumentation.
### Traces
First, modify `app.py` to include code that initializes a tracer and uses it to
create a trace that's a child of the one that's automatically generated:
```python
from random import randint
from flask import Flask
from opentelemetry import trace
# Acquire a tracer
tracer = trace.get_tracer("diceroller.tracer")
app = Flask(__name__)
@app.route("/rolldice")
def roll_dice():
return str(roll())
def roll():
# This creates a new span that's the child of the current one
with tracer.start_as_current_span("roll") as rollspan:
res = randint(1, 6)
rollspan.set_attribute("roll.value", res)
return res
```
Now run the app again:
```shell
export OTEL_PYTHON_LOGGING_AUTO_INSTRUMENTATION_ENABLED=true
opentelemetry-instrument \
--traces_exporter console \
--metrics_exporter console \
--logs_exporter console \
--service_name dice-server \
flask run -p 8080
```
When you send a request to the server, you'll see two spans in the trace emitted
to the console, and the one called `roll` registers its parent as the
automatically created one:
<details>
<summary>View example output</summary>
```json
{
"name": "roll",
"context": {
"trace_id": "0x6f781c83394ed2f33120370a11fced47",
"span_id": "0x623321c35b8fa837",
"trace_state": "[]"
},
"kind": "SpanKind.INTERNAL",
"parent_id": "0x09abe52faf1d80d5",
"start_time": "2023-10-10T08:18:28.679261Z",
"end_time": "2023-10-10T08:18:28.679560Z",
"status": {
"status_code": "UNSET"
},
"attributes": {
"roll.value": "6"
},
"events": [],
"links": [],
"resource": {
"attributes": {
"telemetry.sdk.language": "python",
"telemetry.sdk.name": "opentelemetry",
"telemetry.sdk.version": "1.17.0",
"service.name": "dice-server",
"telemetry.auto.version": "0.38b0"
},
"schema_url": ""
}
}
{
"name": "/rolldice",
"context": {
"trace_id": "0x6f781c83394ed2f33120370a11fced47",
"span_id": "0x09abe52faf1d80d5",
"trace_state": "[]"
},
"kind": "SpanKind.SERVER",
"parent_id": null,
"start_time": "2023-10-10T08:18:28.678348Z",
"end_time": "2023-10-10T08:18:28.679677Z",
"status": {
"status_code": "UNSET"
},
"attributes": {
"http.method": "GET",
"http.server_name": "127.0.0.1",
"http.scheme": "http",
"net.host.port": 8080,
"http.host": "localhost:8080",
"http.target": "/rolldice?rolls=12",
"net.peer.ip": "127.0.0.1",
"http.user_agent": "curl/8.1.2",
"net.peer.port": 58485,
"http.flavor": "1.1",
"http.route": "/rolldice",
"http.status_code": 200
},
"events": [],
"links": [],
"resource": {
"attributes": {
"telemetry.sdk.language": "python",
"telemetry.sdk.name": "opentelemetry",
"telemetry.sdk.version": "1.17.0",
"service.name": "dice-server",
"telemetry.auto.version": "0.38b0"
},
"schema_url": ""
}
}
```
</details>
The `parent_id` of `roll` is the same as the `span_id` for `/rolldice`,
indicating a parent-child relationship!
### Metrics
Now modify `app.py` to include code that initializes a meter and uses it to
create a counter instrument which counts the number of rolls for each possible
roll value:
```python
# These are the necessary import declarations
from opentelemetry import trace
from opentelemetry import metrics
from random import randint
from flask import Flask, request
import logging
# Acquire a tracer
tracer = trace.get_tracer("diceroller.tracer")
# Acquire a meter.
meter = metrics.get_meter("diceroller.meter")
# Now create a counter instrument to make measurements with
roll_counter = meter.create_counter(
"dice.rolls",
description="The number of rolls by roll value",
)
app = Flask(__name__)
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
@app.route("/rolldice")
def roll_dice():
# This creates a new span that's the child of the current one
with tracer.start_as_current_span("roll") as roll_span:
player = request.args.get('player', default = None, type = str)
result = str(roll())
roll_span.set_attribute("roll.value", result)
# This adds 1 to the counter for the given roll value
roll_counter.add(1, {"roll.value": result})
if player:
logger.warn("{} is rolling the dice: {}", player, result)
else:
logger.warn("Anonymous player is rolling the dice: %s", result)
return result
def roll():
return randint(1, 6)
```
Now run the app again:
```shell
export OTEL_PYTHON_LOGGING_AUTO_INSTRUMENTATION_ENABLED=true
opentelemetry-instrument \
--traces_exporter console \
--metrics_exporter console \
--logs_exporter console \
--service_name dice-server \
flask run -p 8080
```
When you send a request to the server, you'll see the roll counter metric
emitted to the console, with separate counts for each roll value:
<details>
<summary>View example output</summary>
```json
{
"resource_metrics": [
{
"resource": {
"attributes": {
"telemetry.sdk.language": "python",
"telemetry.sdk.name": "opentelemetry",
"telemetry.sdk.version": "1.17.0",
"service.name": "dice-server",
"telemetry.auto.version": "0.38b0"
},
"schema_url": ""
},
"scope_metrics": [
{
"scope": {
"name": "opentelemetry.instrumentation.flask",
"version": "0.38b0",
"schema_url": ""
},
"metrics": [
{
"name": "http.server.active_requests",
"description": "measures the number of concurrent HTTP requests that are currently in-flight",
"unit": "requests",
"data": {
"data_points": [
{
"attributes": {
"http.method": "GET",
"http.host": "localhost:8080",
"http.scheme": "http",
"http.flavor": "1.1",
"http.server_name": "127.0.0.1"
},
"start_time_unix_nano": 1696926005694857000,
"time_unix_nano": 1696926063549782000,
"value": 0
}
],
"aggregation_temporality": 2,
"is_monotonic": false
}
},
{
"name": "http.server.duration",
"description": "measures the duration of the inbound HTTP request",
"unit": "ms",
"data": {
"data_points": [
{
"attributes": {
"http.method": "GET",
"http.host": "localhost:8080",
"http.scheme": "http",
"http.flavor": "1.1",
"http.server_name": "127.0.0.1",
"net.host.port": 8080,
"http.status_code": 200
},
"start_time_unix_nano": 1696926005695798000,
"time_unix_nano": 1696926063549782000,
"count": 7,
"sum": 6,
"bucket_counts": [
1, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
],
"explicit_bounds": [
0.0, 5.0, 10.0, 25.0, 50.0, 75.0, 100.0, 250.0, 500.0,
750.0, 1000.0, 2500.0, 5000.0, 7500.0, 10000.0
],
"min": 0,
"max": 1
}
],
"aggregation_temporality": 2
}
}
],
"schema_url": ""
},
{
"scope": {
"name": "diceroller.meter",
"version": "",
"schema_url": ""
},
"metrics": [
{
"name": "dice.rolls",
"description": "The number of rolls by roll value",
"unit": "",
"data": {
"data_points": [
{
"attributes": {
"roll.value": "5"
},
"start_time_unix_nano": 1696926005695491000,
"time_unix_nano": 1696926063549782000,
"value": 3
},
{
"attributes": {
"roll.value": "6"
},
"start_time_unix_nano": 1696926005695491000,
"time_unix_nano": 1696926063549782000,
"value": 1
},
{
"attributes": {
"roll.value": "1"
},
"start_time_unix_nano": 1696926005695491000,
"time_unix_nano": 1696926063549782000,
"value": 1
},
{
"attributes": {
"roll.value": "3"
},
"start_time_unix_nano": 1696926005695491000,
"time_unix_nano": 1696926063549782000,
"value": 1
},
{
"attributes": {
"roll.value": "4"
},
"start_time_unix_nano": 1696926005695491000,
"time_unix_nano": 1696926063549782000,
"value": 1
}
],
"aggregation_temporality": 2,
"is_monotonic": true
}
}
],
"schema_url": ""
}
],
"schema_url": ""
}
]
}
```
</details>
## Send telemetry to an OpenTelemetry Collector
The [OpenTelemetry Collector](/docs/collector/) is a critical component of most
production deployments. Some examples of when it's beneficial to use a
collector:
- A single telemetry sink shared by multiple services, to reduce overhead of
switching exporters
- Aggregating traces across multiple services, running on multiple hosts
- A central place to process traces prior to exporting them to a backend
Unless you have just a single service or are experimenting, you'll want to use a
collector in production deployments.
### Configure and run a local collector
First, save the following collector configuration code to a file in the `/tmp/`
directory:
```yaml
# /tmp/otel-collector-config.yaml
receivers:
otlp:
protocols:
grpc:
endpoint: 0.0.0.0:4317
http:
endpoint: 0.0.0.0:4318
exporters:
# NOTE: Prior to v0.86.0 use `logging` instead of `debug`.
debug:
verbosity: detailed
processors:
batch:
service:
pipelines:
traces:
receivers: [otlp]
exporters: [debug]
processors: [batch]
metrics:
receivers: [otlp]
exporters: [debug]
processors: [batch]
logs:
receivers: [otlp]
exporters: [debug]
processors: [batch]
```
Then run the docker command to acquire and run the collector based on this
configuration:
```shell
docker run -p 4317:4317 \
-v /tmp/otel-collector-config.yaml:/etc/otel-collector-config.yaml \
otel/opentelemetry-collector:latest \
--config=/etc/otel-collector-config.yaml
```
You will now have an collector instance running locally, listening on port 4317.
### Modify the command to export spans and metrics via OTLP
The next step is to modify the command to send spans and metrics to the
collector via OTLP instead of the console.
To do this, install the OTLP exporter package:
```shell
pip install opentelemetry-exporter-otlp
```
The `opentelemetry-instrument` agent will detect the package you just installed
and default to OTLP export when it's run next.
### Run the application
Run the application like before, but don't export to the console:
```shell
export OTEL_PYTHON_LOGGING_AUTO_INSTRUMENTATION_ENABLED=true
opentelemetry-instrument --logs_exporter otlp flask run -p 8080
```
By default, `opentelemetry-instrument` exports traces and metrics over OTLP/gRPC
and will send them to `localhost:4317`, which is what the collector is listening
on.
When you access the `/rolldice` route now, you'll see output in the collector
process instead of the flask process, which should look something like this:
<details>
<summary>View example output</summary>
```text
2022-06-09T20:43:39.915Z DEBUG debugexporter/debug_exporter.go:51 ResourceSpans #0
Resource labels:
-> telemetry.sdk.language: STRING(python)
-> telemetry.sdk.name: STRING(opentelemetry)
-> telemetry.sdk.version: STRING(1.12.0rc1)
-> telemetry.auto.version: STRING(0.31b0)
-> service.name: STRING(unknown_service)
InstrumentationLibrarySpans #0
InstrumentationLibrary app
Span #0
Trace ID : 7d4047189ac3d5f96d590f974bbec20a
Parent ID : 0b21630539446c31
ID : 4d18cee9463a79ba
Name : roll
Kind : SPAN_KIND_INTERNAL
Start time : 2022-06-09 20:43:37.390134089 +0000 UTC
End time : 2022-06-09 20:43:37.390327687 +0000 UTC
Status code : STATUS_CODE_UNSET
Status message :
Attributes:
-> roll.value: INT(5)
InstrumentationLibrarySpans #1
InstrumentationLibrary opentelemetry.instrumentation.flask 0.31b0
Span #0
Trace ID : 7d4047189ac3d5f96d590f974bbec20a
Parent ID :
ID : 0b21630539446c31
Name : /rolldice
Kind : SPAN_KIND_SERVER
Start time : 2022-06-09 20:43:37.388733595 +0000 UTC
End time : 2022-06-09 20:43:37.390723792 +0000 UTC
Status code : STATUS_CODE_UNSET
Status message :
Attributes:
-> http.method: STRING(GET)
-> http.server_name: STRING(127.0.0.1)
-> http.scheme: STRING(http)
-> net.host.port: INT(5000)
-> http.host: STRING(localhost:5000)
-> http.target: STRING(/rolldice)
-> net.peer.ip: STRING(127.0.0.1)
-> http.user_agent: STRING(curl/7.82.0)
-> net.peer.port: INT(53878)
-> http.flavor: STRING(1.1)
-> http.route: STRING(/rolldice)
-> http.status_code: INT(200)
2022-06-09T20:43:40.025Z INFO debugexporter/debug_exporter.go:56 MetricsExporter {"#metrics": 1}
2022-06-09T20:43:40.025Z DEBUG debugexporter/debug_exporter.go:66 ResourceMetrics #0
Resource labels:
-> telemetry.sdk.language: STRING(python)
-> telemetry.sdk.name: STRING(opentelemetry)
-> telemetry.sdk.version: STRING(1.12.0rc1)
-> telemetry.auto.version: STRING(0.31b0)
-> service.name: STRING(unknown_service)
InstrumentationLibraryMetrics #0
InstrumentationLibrary app
Metric #0
Descriptor:
-> Name: roll_counter
-> Description: The number of rolls by roll value
-> Unit:
-> DataType: Sum
-> IsMonotonic: true
-> AggregationTemporality: AGGREGATION_TEMPORALITY_CUMULATIVE
NumberDataPoints #0
Data point attributes:
-> roll.value: INT(5)
StartTimestamp: 2022-06-09 20:43:37.390226915 +0000 UTC
Timestamp: 2022-06-09 20:43:39.848587966 +0000 UTC
Value: 1
```
</details>
## Next steps
There are several options available for automatic instrumentation and Python.
See [Zero-code Instrumentation](/docs/zero-code/python/) to learn about them and
how to configure them.
There's a lot more to manual instrumentation than just creating a child span. To
learn details about initializing manual instrumentation and many more parts of
the OpenTelemetry API you can use, see
[Manual Instrumentation](../instrumentation/).
There are several options for exporting your telemetry data with OpenTelemetry.
To learn how to export your data to a preferred backend, see
[Exporters](../exporters/).
If you'd like to explore a more complex example, take a look at the
[OpenTelemetry Demo](/docs/demo/), which includes the Python based
[Recommendation Service](/docs/demo/services/recommendation/) and
[Load Generator](/docs/demo/services/load-generator/).
[traces]: /docs/concepts/signals/traces/
[metrics]: /docs/concepts/signals/metrics/
[logs]: /docs/concepts/signals/logs/