vllm/docs/deployment/frameworks/streamlit.md

44 lines
1.1 KiB
Markdown

---
title: Streamlit
---
[](){ #deployment-streamlit }
[Streamlit](https://github.com/streamlit/streamlit) lets you transform Python scripts into interactive web apps in minutes, instead of weeks. Build dashboards, generate reports, or create chat apps.
It can be quickly integrated with vLLM as a backend API server, enabling powerful LLM inference via API calls.
## Prerequisites
- Setup vLLM environment
## Deploy
- Start the vLLM server with the supported chat completion model, e.g.
```console
vllm serve qwen/Qwen1.5-0.5B-Chat
```
- Install streamlit and openai:
```console
pip install streamlit openai
```
- Use the script: <gh-file:examples/online_serving/streamlit_openai_chatbot_webserver.py>
- Start the streamlit web UI and start to chat:
```console
streamlit run streamlit_openai_chatbot_webserver.py
# or specify the VLLM_API_BASE or VLLM_API_KEY
VLLM_API_BASE="http://vllm-server-host:vllm-server-port/v1" \
streamlit run streamlit_openai_chatbot_webserver.py
# start with debug mode to view more details
streamlit run streamlit_openai_chatbot_webserver.py --logger.level=debug
```
![](../../assets/deployment/streamlit-chat.png)