vllm/tests/test_utils.py

832 lines
26 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# ruff: noqa
import asyncio
import hashlib
import json
import pickle
import socket
from collections.abc import AsyncIterator
from unittest.mock import patch
import pytest
import torch
import zmq
from vllm_test_utils.monitor import monitor
from vllm.config import ParallelConfig, VllmConfig, set_current_vllm_config
from vllm.utils import (CacheInfo, FlexibleArgumentParser, LRUCache,
MemorySnapshot, PlaceholderModule, StoreBoolean,
bind_kv_cache, common_broadcastable_dtype,
deprecate_kwargs, get_open_port, is_lossless_cast,
make_zmq_path, make_zmq_socket, memory_profiling,
merge_async_iterators, sha256, split_zmq_path,
supports_kw, swap_dict_values)
from .utils import create_new_process_for_each_test, error_on_warning
@pytest.mark.asyncio
async def test_merge_async_iterators():
async def mock_async_iterator(idx: int):
try:
while True:
yield f"item from iterator {idx}"
await asyncio.sleep(0.1)
except asyncio.CancelledError:
print(f"iterator {idx} cancelled")
iterators = [mock_async_iterator(i) for i in range(3)]
merged_iterator = merge_async_iterators(*iterators)
async def stream_output(generator: AsyncIterator[tuple[int, str]]):
async for idx, output in generator:
print(f"idx: {idx}, output: {output}")
task = asyncio.create_task(stream_output(merged_iterator))
await asyncio.sleep(0.5)
task.cancel()
with pytest.raises(asyncio.CancelledError):
await task
for iterator in iterators:
try:
# Can use anext() in python >= 3.10
await asyncio.wait_for(iterator.__anext__(), 1)
except StopAsyncIteration:
# All iterators should be cancelled and print this message.
print("Iterator was cancelled normally")
except (Exception, asyncio.CancelledError) as e:
raise AssertionError() from e
def test_deprecate_kwargs_always():
@deprecate_kwargs("old_arg", is_deprecated=True)
def dummy(*, old_arg: object = None, new_arg: object = None):
pass
with pytest.warns(DeprecationWarning, match="'old_arg'"):
dummy(old_arg=1)
with error_on_warning(DeprecationWarning):
dummy(new_arg=1)
def test_deprecate_kwargs_never():
@deprecate_kwargs("old_arg", is_deprecated=False)
def dummy(*, old_arg: object = None, new_arg: object = None):
pass
with error_on_warning(DeprecationWarning):
dummy(old_arg=1)
with error_on_warning(DeprecationWarning):
dummy(new_arg=1)
def test_deprecate_kwargs_dynamic():
is_deprecated = True
@deprecate_kwargs("old_arg", is_deprecated=lambda: is_deprecated)
def dummy(*, old_arg: object = None, new_arg: object = None):
pass
with pytest.warns(DeprecationWarning, match="'old_arg'"):
dummy(old_arg=1)
with error_on_warning(DeprecationWarning):
dummy(new_arg=1)
is_deprecated = False
with error_on_warning(DeprecationWarning):
dummy(old_arg=1)
with error_on_warning(DeprecationWarning):
dummy(new_arg=1)
def test_deprecate_kwargs_additional_message():
@deprecate_kwargs("old_arg", is_deprecated=True, additional_message="abcd")
def dummy(*, old_arg: object = None, new_arg: object = None):
pass
with pytest.warns(DeprecationWarning, match="abcd"):
dummy(old_arg=1)
def test_get_open_port(monkeypatch: pytest.MonkeyPatch):
with monkeypatch.context() as m:
m.setenv("VLLM_PORT", "5678")
# make sure we can get multiple ports, even if the env var is set
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s1:
s1.bind(("localhost", get_open_port()))
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s2:
s2.bind(("localhost", get_open_port()))
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s3:
s3.bind(("localhost", get_open_port()))
# Tests for FlexibleArgumentParser
@pytest.fixture
def parser():
parser = FlexibleArgumentParser()
parser.add_argument('--image-input-type',
choices=['pixel_values', 'image_features'])
parser.add_argument('--model-name')
parser.add_argument('--batch-size', type=int)
parser.add_argument('--enable-feature', action='store_true')
parser.add_argument('--hf-overrides', type=json.loads)
return parser
@pytest.fixture
def parser_with_config():
parser = FlexibleArgumentParser()
parser.add_argument('serve')
parser.add_argument('model_tag', nargs='?')
parser.add_argument('--model', type=str)
parser.add_argument('--served-model-name', type=str)
parser.add_argument('--config', type=str)
parser.add_argument('--port', type=int)
parser.add_argument('--tensor-parallel-size', type=int)
parser.add_argument('--trust-remote-code', action='store_true')
parser.add_argument('--multi-step-stream-outputs', action=StoreBoolean)
return parser
def test_underscore_to_dash(parser):
args = parser.parse_args(['--image_input_type', 'pixel_values'])
assert args.image_input_type == 'pixel_values'
def test_mixed_usage(parser):
args = parser.parse_args([
'--image_input_type', 'image_features', '--model-name',
'facebook/opt-125m'
])
assert args.image_input_type == 'image_features'
assert args.model_name == 'facebook/opt-125m'
def test_with_equals_sign(parser):
args = parser.parse_args(
['--image_input_type=pixel_values', '--model-name=facebook/opt-125m'])
assert args.image_input_type == 'pixel_values'
assert args.model_name == 'facebook/opt-125m'
def test_with_int_value(parser):
args = parser.parse_args(['--batch_size', '32'])
assert args.batch_size == 32
args = parser.parse_args(['--batch-size', '32'])
assert args.batch_size == 32
def test_with_bool_flag(parser):
args = parser.parse_args(['--enable_feature'])
assert args.enable_feature is True
args = parser.parse_args(['--enable-feature'])
assert args.enable_feature is True
def test_invalid_choice(parser):
with pytest.raises(SystemExit):
parser.parse_args(['--image_input_type', 'invalid_choice'])
def test_missing_required_argument(parser):
parser.add_argument('--required-arg', required=True)
with pytest.raises(SystemExit):
parser.parse_args([])
def test_cli_override_to_config(parser_with_config, cli_config_file):
args = parser_with_config.parse_args([
'serve', 'mymodel', '--config', cli_config_file,
'--tensor-parallel-size', '3'
])
assert args.tensor_parallel_size == 3
args = parser_with_config.parse_args([
'serve', 'mymodel', '--tensor-parallel-size', '3', '--config',
cli_config_file
])
assert args.tensor_parallel_size == 3
assert args.port == 12312
args = parser_with_config.parse_args([
'serve', 'mymodel', '--tensor-parallel-size', '3', '--config',
cli_config_file, '--port', '666'
])
assert args.tensor_parallel_size == 3
assert args.port == 666
def test_config_args(parser_with_config, cli_config_file):
args = parser_with_config.parse_args(
['serve', 'mymodel', '--config', cli_config_file])
assert args.tensor_parallel_size == 2
assert args.trust_remote_code
assert not args.multi_step_stream_outputs
def test_config_file(parser_with_config):
with pytest.raises(FileNotFoundError):
parser_with_config.parse_args(
['serve', 'mymodel', '--config', 'test_config.yml'])
with pytest.raises(ValueError):
parser_with_config.parse_args(
['serve', 'mymodel', '--config', './data/test_config.json'])
with pytest.raises(ValueError):
parser_with_config.parse_args([
'serve', 'mymodel', '--tensor-parallel-size', '3', '--config',
'--batch-size', '32'
])
def test_no_model_tag(parser_with_config, cli_config_file):
with pytest.raises(ValueError):
parser_with_config.parse_args(['serve', '--config', cli_config_file])
def test_dict_args(parser):
args = [
"--model-name=something.something",
"--hf-overrides.key1",
"val1",
# Test nesting
"--hf-overrides.key2.key3",
"val2",
"--hf-overrides.key2.key4",
"val3",
# Test = sign
"--hf-overrides.key5=val4",
# Test underscore to dash conversion
"--hf_overrides.key_6",
"val5",
"--hf_overrides.key-7.key_8",
"val6",
# Test data type detection
"--hf_overrides.key9",
"100",
"--hf_overrides.key10",
"100.0",
"--hf_overrides.key11",
"true",
"--hf_overrides.key12.key13",
"null",
]
parsed_args = parser.parse_args(args)
assert parsed_args.model_name == "something.something"
assert parsed_args.hf_overrides == {
"key1": "val1",
"key2": {
"key3": "val2",
"key4": "val3",
},
"key5": "val4",
"key_6": "val5",
"key-7": {
"key_8": "val6",
},
"key9": 100,
"key10": 100.0,
"key11": True,
"key12": {
"key13": None,
},
}
# yapf: enable
@pytest.mark.parametrize(
"callable,kw_name,requires_kw_only,allow_var_kwargs,is_supported",
[
# Tests for positional argument support
(lambda foo: None, "foo", True, True, False),
(lambda foo: None, "foo", False, True, True),
# Tests for positional or keyword / keyword only
(lambda foo=100: None, "foo", True, True, False),
(lambda *, foo: None, "foo", False, True, True),
# Tests to make sure the names of variadic params are NOT supported
(lambda *args: None, "args", False, True, False),
(lambda **kwargs: None, "kwargs", False, True, False),
# Tests for if we allow var kwargs to add support
(lambda foo: None, "something_else", False, True, False),
(lambda foo, **kwargs: None, "something_else", False, True, True),
(lambda foo, **kwargs: None, "kwargs", True, True, False),
(lambda foo, **kwargs: None, "foo", True, True, False),
])
# yapf: disable
def test_supports_kw(callable,kw_name,requires_kw_only,
allow_var_kwargs,is_supported):
assert supports_kw(
callable=callable,
kw_name=kw_name,
requires_kw_only=requires_kw_only,
allow_var_kwargs=allow_var_kwargs
) == is_supported
@create_new_process_for_each_test()
def test_memory_profiling():
# Fake out some model loading + inference memory usage to test profiling
# Memory used by other processes will show up as cuda usage outside of torch
from vllm.distributed.device_communicators.cuda_wrapper import (
CudaRTLibrary)
lib = CudaRTLibrary()
# 512 MiB allocation outside of this instance
handle1 = lib.cudaMalloc(512 * 1024 * 1024)
baseline_snapshot = MemorySnapshot()
# load weights
weights = torch.randn(128, 1024, 1024, device='cuda', dtype=torch.float32)
weights_memory = 128 * 1024 * 1024 * 4 # 512 MiB
def measure_current_non_torch():
free, total = torch.cuda.mem_get_info()
current_used = total - free
current_torch = torch.cuda.memory_reserved()
current_non_torch = current_used - current_torch
return current_non_torch
with memory_profiling(baseline_snapshot=baseline_snapshot,
weights_memory=weights_memory) as result, \
monitor(measure_current_non_torch) as monitored_values:
# make a memory spike, 1 GiB
spike = torch.randn(256, 1024, 1024, device='cuda', dtype=torch.float32)
del spike
# Add some extra non-torch memory 256 MiB (simulate NCCL)
handle2 = lib.cudaMalloc(256 * 1024 * 1024)
# this is an analytic value, it is exact,
# we only have 256 MiB non-torch memory increase
measured_diff = monitored_values.values[-1] - monitored_values.values[0]
assert measured_diff == 256 * 1024 * 1024
# Check that the memory usage is within 5% of the expected values
# 5% tolerance is caused by cuda runtime.
# we cannot control cuda runtime in the granularity of bytes,
# which causes a small error (<10 MiB in practice)
non_torch_ratio = result.non_torch_increase / (256 * 1024 * 1024) # noqa
assert abs(non_torch_ratio - 1) <= 0.05
assert result.torch_peak_increase == 1024 * 1024 * 1024
del weights
lib.cudaFree(handle1)
lib.cudaFree(handle2)
def test_bind_kv_cache():
from vllm.attention import Attention
ctx = {
'layers.0.self_attn': Attention(32, 128, 0.1),
'layers.1.self_attn': Attention(32, 128, 0.1),
'layers.2.self_attn': Attention(32, 128, 0.1),
'layers.3.self_attn': Attention(32, 128, 0.1),
}
kv_cache = [
torch.zeros((1, )),
torch.zeros((1, )),
torch.zeros((1, )),
torch.zeros((1, )),
]
bind_kv_cache(ctx, [kv_cache])
assert ctx['layers.0.self_attn'].kv_cache[0] is kv_cache[0]
assert ctx['layers.1.self_attn'].kv_cache[0] is kv_cache[1]
assert ctx['layers.2.self_attn'].kv_cache[0] is kv_cache[2]
assert ctx['layers.3.self_attn'].kv_cache[0] is kv_cache[3]
def test_bind_kv_cache_non_attention():
from vllm.attention import Attention
# example from Jamba PP=2
ctx = {
'model.layers.20.attn': Attention(32, 128, 0.1),
'model.layers.28.attn': Attention(32, 128, 0.1),
}
kv_cache = [
torch.zeros((1, )),
torch.zeros((1, )),
]
bind_kv_cache(ctx, [kv_cache])
assert ctx['model.layers.20.attn'].kv_cache[0] is kv_cache[0]
assert ctx['model.layers.28.attn'].kv_cache[0] is kv_cache[1]
def test_bind_kv_cache_encoder_decoder(monkeypatch: pytest.MonkeyPatch):
# V1 TESTS: ENCODER_DECODER is not supported on V1 yet.
with monkeypatch.context() as m:
m.setenv("VLLM_USE_V1", "0")
from vllm.attention import Attention, AttentionType
# example from bart
ctx = {
'encoder.layers.0.self_attn.attn':
Attention(32, 128, 0.1, attn_type=AttentionType.ENCODER),
'decoder.layers.0.encoder_attn.attn':
Attention(32, 128, 0.1, attn_type=AttentionType.ENCODER_DECODER),
'decoder.layers.0.self_attn.attn':
Attention(32, 128, 0.1, attn_type=AttentionType.DECODER),
}
kv_cache = [
torch.zeros((1, )),
]
encoder_kv_cache = ctx['encoder.layers.0.self_attn.attn'].kv_cache
bind_kv_cache(ctx, [kv_cache])
assert ctx['encoder.layers.0.self_attn.attn'].kv_cache is encoder_kv_cache
assert ctx['decoder.layers.0.encoder_attn.attn'].kv_cache[0] is kv_cache[0]
assert ctx['decoder.layers.0.self_attn.attn'].kv_cache[0] is kv_cache[0]
def test_bind_kv_cache_pp():
with patch("vllm.utils.cuda_device_count_stateless", lambda: 2):
# this test runs with 1 GPU, but we simulate 2 GPUs
cfg = VllmConfig(
parallel_config=ParallelConfig(pipeline_parallel_size=2))
with set_current_vllm_config(cfg):
from vllm.attention import Attention
ctx = {
'layers.0.self_attn': Attention(32, 128, 0.1),
}
kv_cache = [
[torch.zeros((1, ))],
[torch.zeros((1, ))]
]
bind_kv_cache(ctx, kv_cache)
assert ctx['layers.0.self_attn'].kv_cache[0] is kv_cache[0][0]
assert ctx['layers.0.self_attn'].kv_cache[1] is kv_cache[1][0]
class TestLRUCache(LRUCache):
def _on_remove(self, key, value):
if not hasattr(self, "_remove_counter"):
self._remove_counter = 0
self._remove_counter += 1
def test_lru_cache():
cache = TestLRUCache(3)
assert cache.stat() == CacheInfo(hits=0, total=0)
assert cache.stat(delta=True) == CacheInfo(hits=0, total=0)
cache.put(1, 1)
assert len(cache) == 1
cache.put(1, 1)
assert len(cache) == 1
cache.put(2, 2)
assert len(cache) == 2
cache.put(3, 3)
assert len(cache) == 3
assert set(cache.cache) == {1, 2, 3}
cache.put(4, 4)
assert len(cache) == 3
assert set(cache.cache) == {2, 3, 4}
assert cache._remove_counter == 1
assert cache.get(2) == 2
assert cache.stat() == CacheInfo(hits=1, total=1)
assert cache.stat(delta=True) == CacheInfo(hits=1, total=1)
assert cache[2] == 2
assert cache.stat() == CacheInfo(hits=2, total=2)
assert cache.stat(delta=True) == CacheInfo(hits=1, total=1)
cache.put(5, 5)
assert set(cache.cache) == {2, 4, 5}
assert cache._remove_counter == 2
assert cache.pop(5) == 5
assert len(cache) == 2
assert set(cache.cache) == {2, 4}
assert cache._remove_counter == 3
assert cache.get(-1) is None
assert cache.stat() == CacheInfo(hits=2, total=3)
assert cache.stat(delta=True) == CacheInfo(hits=0, total=1)
cache.pop(10)
assert len(cache) == 2
assert set(cache.cache) == {2, 4}
assert cache._remove_counter == 3
cache.get(10)
assert len(cache) == 2
assert set(cache.cache) == {2, 4}
assert cache._remove_counter == 3
cache.put(6, 6)
assert len(cache) == 3
assert set(cache.cache) == {2, 4, 6}
assert 2 in cache
assert 4 in cache
assert 6 in cache
cache.remove_oldest()
assert len(cache) == 2
assert set(cache.cache) == {2, 6}
assert cache._remove_counter == 4
cache.clear()
assert len(cache) == 0
assert cache._remove_counter == 6
assert cache.stat() == CacheInfo(hits=0, total=0)
assert cache.stat(delta=True) == CacheInfo(hits=0, total=0)
cache._remove_counter = 0
cache[1] = 1
assert len(cache) == 1
cache[1] = 1
assert len(cache) == 1
cache[2] = 2
assert len(cache) == 2
cache[3] = 3
assert len(cache) == 3
assert set(cache.cache) == {1, 2, 3}
cache[4] = 4
assert len(cache) == 3
assert set(cache.cache) == {2, 3, 4}
assert cache._remove_counter == 1
assert cache[2] == 2
cache[5] = 5
assert set(cache.cache) == {2, 4, 5}
assert cache._remove_counter == 2
del cache[5]
assert len(cache) == 2
assert set(cache.cache) == {2, 4}
assert cache._remove_counter == 3
cache.pop(10)
assert len(cache) == 2
assert set(cache.cache) == {2, 4}
assert cache._remove_counter == 3
cache[6] = 6
assert len(cache) == 3
assert set(cache.cache) == {2, 4, 6}
assert 2 in cache
assert 4 in cache
assert 6 in cache
# yapf: disable
@pytest.mark.parametrize(
("src_dtype", "tgt_dtype", "expected_result"),
[
# Different precision_levels
(torch.bool, torch.int8, True),
(torch.bool, torch.float16, True),
(torch.bool, torch.complex32, True),
(torch.int64, torch.bool, False),
(torch.int64, torch.float16, True),
(torch.int64, torch.complex32, True),
(torch.float64, torch.bool, False),
(torch.float64, torch.int8, False),
(torch.float64, torch.complex32, True),
(torch.complex128, torch.bool, False),
(torch.complex128, torch.int8, False),
(torch.complex128, torch.float16, False),
# precision_level=0
(torch.bool, torch.bool, True),
# precision_level=1
(torch.int8, torch.int16, True),
(torch.int16, torch.int8, False),
(torch.uint8, torch.int8, False),
(torch.int8, torch.uint8, False),
# precision_level=2
(torch.float16, torch.float32, True),
(torch.float32, torch.float16, False),
(torch.bfloat16, torch.float32, True),
(torch.float32, torch.bfloat16, False),
# precision_level=3
(torch.complex32, torch.complex64, True),
(torch.complex64, torch.complex32, False),
],
)
# yapf: enable
def test_is_lossless_cast(src_dtype, tgt_dtype, expected_result):
assert is_lossless_cast(src_dtype, tgt_dtype) == expected_result
# yapf: disable
@pytest.mark.parametrize(
("dtypes", "expected_result"),
[
([torch.bool], torch.bool),
([torch.bool, torch.int8], torch.int8),
([torch.bool, torch.int8, torch.float16], torch.float16),
([torch.bool, torch.int8, torch.float16, torch.complex32], torch.complex32), # noqa: E501
],
)
# yapf: enable
def test_common_broadcastable_dtype(dtypes, expected_result):
assert common_broadcastable_dtype(dtypes) == expected_result
def test_placeholder_module_error_handling():
placeholder = PlaceholderModule("placeholder_1234")
def build_ctx():
return pytest.raises(ModuleNotFoundError, match="No module named")
with build_ctx():
int(placeholder)
with build_ctx():
placeholder()
with build_ctx():
_ = placeholder.some_attr
with build_ctx():
# Test conflict with internal __name attribute
_ = placeholder.name
# OK to print the placeholder or use it in a f-string
_ = repr(placeholder)
_ = str(placeholder)
# No error yet; only error when it is used downstream
placeholder_attr = placeholder.placeholder_attr("attr")
with build_ctx():
int(placeholder_attr)
with build_ctx():
placeholder_attr()
with build_ctx():
_ = placeholder_attr.some_attr
with build_ctx():
# Test conflict with internal __module attribute
_ = placeholder_attr.module
# yapf: disable
@pytest.mark.parametrize(
"obj,key1,key2",
[
# Tests for both keys exist
({1: "a", 2: "b"}, 1, 2),
# Tests for one key does not exist
({1: "a", 2: "b"}, 1, 3),
# Tests for both keys do not exist
({1: "a", 2: "b"}, 3, 4),
])
# yapf: enable
def test_swap_dict_values(obj, key1, key2):
original_obj = obj.copy()
swap_dict_values(obj, key1, key2)
if key1 in original_obj:
assert obj[key2] == original_obj[key1]
else:
assert key2 not in obj
if key2 in original_obj:
assert obj[key1] == original_obj[key2]
else:
assert key1 not in obj
def test_model_specification(parser_with_config, cli_config_file,
cli_config_file_with_model):
# Test model in CLI takes precedence over config
args = parser_with_config.parse_args(
['serve', 'cli-model', '--config', cli_config_file_with_model])
assert args.model_tag == 'cli-model'
assert args.served_model_name == 'mymodel'
# Test model from config file works
args = parser_with_config.parse_args([
'serve',
'--config',
cli_config_file_with_model,
])
assert args.model == 'config-model'
assert args.served_model_name == 'mymodel'
# Test no model specified anywhere raises error
with pytest.raises(ValueError, match="No model specified!"):
parser_with_config.parse_args(['serve', '--config', cli_config_file])
# Test using --model option raises error
with pytest.raises(
ValueError,
match=
("With `vllm serve`, you should provide the model as a positional "
"argument or in a config file instead of via the `--model` option."),
):
parser_with_config.parse_args(['serve', '--model', 'my-model'])
# Test other config values are preserved
args = parser_with_config.parse_args([
'serve',
'cli-model',
'--config',
cli_config_file_with_model,
])
assert args.tensor_parallel_size == 2
assert args.trust_remote_code is True
assert args.multi_step_stream_outputs is False
assert args.port == 12312
@pytest.mark.parametrize("input", [(), ("abc", ), (None, ),
(None, bool, [1, 2, 3])])
@pytest.mark.parametrize("output", [0, 1, 2])
def test_sha256(input: tuple, output: int):
hash = sha256(input)
assert hash is not None
assert isinstance(hash, int)
assert hash != 0
bytes = pickle.dumps(input, protocol=pickle.HIGHEST_PROTOCOL)
assert hash == int.from_bytes(hashlib.sha256(bytes).digest(),
byteorder="big")
# hashing again, returns the same value
assert hash == sha256(input)
# hashing different input, returns different value
assert hash != sha256(input + (1, ))
@pytest.mark.parametrize(
"path,expected",
[
("ipc://some_path", ("ipc", "some_path", "")),
("tcp://127.0.0.1:5555", ("tcp", "127.0.0.1", "5555")),
("tcp://[::1]:5555", ("tcp", "::1", "5555")), # IPv6 address
("inproc://some_identifier", ("inproc", "some_identifier", "")),
])
def test_split_zmq_path(path, expected):
assert split_zmq_path(path) == expected
@pytest.mark.parametrize(
"invalid_path",
[
"invalid_path", # Missing scheme
"tcp://127.0.0.1", # Missing port
"tcp://[::1]", # Missing port for IPv6
"tcp://:5555", # Missing host
])
def test_split_zmq_path_invalid(invalid_path):
with pytest.raises(ValueError):
split_zmq_path(invalid_path)
def test_make_zmq_socket_ipv6():
# Check if IPv6 is supported by trying to create an IPv6 socket
try:
sock = socket.socket(socket.AF_INET6, socket.SOCK_STREAM)
sock.close()
except socket.error:
pytest.skip("IPv6 is not supported on this system")
ctx = zmq.Context()
ipv6_path = "tcp://[::]:5555" # IPv6 loopback address
socket_type = zmq.REP # Example socket type
# Create the socket
zsock: zmq.Socket = make_zmq_socket(ctx, ipv6_path, socket_type)
# Verify that the IPV6 option is set
assert zsock.getsockopt(
zmq.IPV6) == 1, "IPV6 option should be enabled for IPv6 addresses"
# Clean up
zsock.close()
ctx.term()
def test_make_zmq_path():
assert make_zmq_path("tcp", "127.0.0.1", "5555") == "tcp://127.0.0.1:5555"
assert make_zmq_path("tcp", "::1", "5555") == "tcp://[::1]:5555"