pipelines/sdk/python/tests/compiler/component_builder_test.py

366 lines
14 KiB
Python

# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from kfp.compiler._component_builder import _generate_dockerfile, _dependency_to_requirements, _func_to_entrypoint
from kfp.compiler._component_builder import CodeGenerator
from kfp.compiler._component_builder import VersionedDependency
from kfp.compiler._component_builder import DependencyHelper
import os
import unittest
import yaml
import tarfile
from pathlib import Path
import inspect
from collections import OrderedDict
from typing import NamedTuple
class TestVersionedDependency(unittest.TestCase):
def test_version(self):
""" test version overrides min_version and max_version """
version = VersionedDependency(name='tensorflow', version='0.3.0', min_version='0.1.0', max_version='0.4.0')
self.assertTrue(version.min_version == '0.3.0')
self.assertTrue(version.max_version == '0.3.0')
self.assertTrue(version.has_versions())
self.assertTrue(version.name == 'tensorflow')
def test_minmax_version(self):
""" test if min_version and max_version are configured when version is not given """
version = VersionedDependency(name='tensorflow', min_version='0.1.0', max_version='0.4.0')
self.assertTrue(version.min_version == '0.1.0')
self.assertTrue(version.max_version == '0.4.0')
self.assertTrue(version.has_versions())
def test_min_or_max_version(self):
""" test if min_version and max_version are configured when version is not given """
version = VersionedDependency(name='tensorflow', min_version='0.1.0')
self.assertTrue(version.min_version == '0.1.0')
self.assertTrue(version.has_versions())
version = VersionedDependency(name='tensorflow', max_version='0.3.0')
self.assertTrue(version.max_version == '0.3.0')
self.assertTrue(version.has_versions())
def test_no_version(self):
""" test the no version scenario """
version = VersionedDependency(name='tensorflow')
self.assertFalse(version.has_min_version())
self.assertFalse(version.has_max_version())
self.assertFalse(version.has_versions())
class TestDependencyHelper(unittest.TestCase):
def test_generate_requirement(self):
""" Test generating requirement file """
# prepare
test_data_dir = os.path.join(os.path.dirname(__file__), 'testdata')
temp_file = os.path.join(test_data_dir, 'test_requirements.tmp')
dependency_helper = DependencyHelper()
dependency_helper.add_python_package(dependency=VersionedDependency(name='tensorflow', min_version='0.10.0', max_version='0.11.0'))
dependency_helper.add_python_package(dependency=VersionedDependency(name='kubernetes', min_version='0.6.0'))
dependency_helper.add_python_package(dependency=VersionedDependency(name='pytorch', max_version='0.3.0'))
dependency_helper.generate_pip_requirements(temp_file)
golden_requirement_payload = '''\
tensorflow >= 0.10.0, <= 0.11.0
kubernetes >= 0.6.0
pytorch <= 0.3.0
'''
with open(temp_file, 'r') as f:
target_requirement_payload = f.read()
self.assertEqual(target_requirement_payload, golden_requirement_payload)
os.remove(temp_file)
def test_add_python_package(self):
""" Test add_python_package """
# prepare
test_data_dir = os.path.join(os.path.dirname(__file__), 'testdata')
temp_file = os.path.join(test_data_dir, 'test_requirements.tmp')
dependency_helper = DependencyHelper()
dependency_helper.add_python_package(dependency=VersionedDependency(name='tensorflow', min_version='0.10.0', max_version='0.11.0'))
dependency_helper.add_python_package(dependency=VersionedDependency(name='kubernetes', min_version='0.6.0'))
dependency_helper.add_python_package(dependency=VersionedDependency(name='tensorflow', min_version='0.12.0'), override=True)
dependency_helper.add_python_package(dependency=VersionedDependency(name='kubernetes', min_version='0.8.0'), override=False)
dependency_helper.add_python_package(dependency=VersionedDependency(name='pytorch', version='0.3.0'))
dependency_helper.generate_pip_requirements(temp_file)
golden_requirement_payload = '''\
tensorflow >= 0.12.0
kubernetes >= 0.6.0
pytorch >= 0.3.0, <= 0.3.0
'''
with open(temp_file, 'r') as f:
target_requirement_payload = f.read()
self.assertEqual(target_requirement_payload, golden_requirement_payload)
os.remove(temp_file)
def sample_component_func(a: str, b: int) -> float:
result = 3.45
if a == "succ":
result = float(b + 5)
return result
def basic_decorator(name):
def wrapper(func):
return func
return wrapper
@basic_decorator(name='component_sample')
def sample_component_func_two(a: str, b: int) -> float:
result = 3.45
if a == 'succ':
result = float(b + 5)
return result
def sample_component_func_three() -> float:
return 1.0
def sample_component_func_four() -> NamedTuple(
'output', [('a', float), ('b', str)]):
from collections import namedtuple
output = namedtuple('output', ['a', 'b'])
return output(1.0, 'test')
class TestGenerator(unittest.TestCase):
def test_generate_dockerfile(self):
""" Test generate dockerfile """
# prepare
test_data_dir = os.path.join(os.path.dirname(__file__), 'testdata')
target_dockerfile = os.path.join(test_data_dir, 'component.temp.dockerfile')
golden_dockerfile_payload_one = '''\
FROM gcr.io/ngao-mlpipeline-testing/tensorflow:1.10.0
RUN apt-get update -y && apt-get install --no-install-recommends -y -q python3 python3-pip python3-setuptools
ADD main.py /ml/main.py
ENTRYPOINT ["python3", "-u", "/ml/main.py"]'''
golden_dockerfile_payload_two = '''\
FROM gcr.io/ngao-mlpipeline-testing/tensorflow:1.10.0
RUN apt-get update -y && apt-get install --no-install-recommends -y -q python3 python3-pip python3-setuptools
ADD requirements.txt /ml/requirements.txt
RUN pip3 install -r /ml/requirements.txt
ADD main.py /ml/main.py
ENTRYPOINT ["python3", "-u", "/ml/main.py"]'''
golden_dockerfile_payload_three = '''\
FROM gcr.io/ngao-mlpipeline-testing/tensorflow:1.10.0
RUN apt-get update -y && apt-get install --no-install-recommends -y -q python python-pip python-setuptools
ADD requirements.txt /ml/requirements.txt
RUN pip install -r /ml/requirements.txt
ADD main.py /ml/main.py
ENTRYPOINT ["python", "-u", "/ml/main.py"]'''
# check
_generate_dockerfile(filename=target_dockerfile, base_image='gcr.io/ngao-mlpipeline-testing/tensorflow:1.10.0',
entrypoint_filename='main.py', python_version='python3')
with open(target_dockerfile, 'r') as f:
target_dockerfile_payload = f.read()
self.assertEqual(target_dockerfile_payload, golden_dockerfile_payload_one)
_generate_dockerfile(filename=target_dockerfile, base_image='gcr.io/ngao-mlpipeline-testing/tensorflow:1.10.0',
entrypoint_filename='main.py', python_version='python3', requirement_filename='requirements.txt')
with open(target_dockerfile, 'r') as f:
target_dockerfile_payload = f.read()
self.assertEqual(target_dockerfile_payload, golden_dockerfile_payload_two)
_generate_dockerfile(filename=target_dockerfile, base_image='gcr.io/ngao-mlpipeline-testing/tensorflow:1.10.0',
entrypoint_filename='main.py', python_version='python2', requirement_filename='requirements.txt')
with open(target_dockerfile, 'r') as f:
target_dockerfile_payload = f.read()
self.assertEqual(target_dockerfile_payload, golden_dockerfile_payload_three)
self.assertRaises(ValueError, _generate_dockerfile, filename=target_dockerfile,
base_image='gcr.io/ngao-mlpipeline-testing/tensorflow:1.10.0', entrypoint_filename='main.py',
python_version='python4', requirement_filename='requirements.txt')
# clean up
os.remove(target_dockerfile)
def test_generate_requirement(self):
# prepare
test_data_dir = os.path.join(os.path.dirname(__file__), 'testdata')
temp_file = os.path.join(test_data_dir, 'test_requirements.tmp')
dependencies = [
VersionedDependency(name='tensorflow', min_version='0.10.0', max_version='0.11.0'),
VersionedDependency(name='kubernetes', min_version='0.6.0'),
]
_dependency_to_requirements(dependencies, filename=temp_file)
golden_payload = '''\
tensorflow >= 0.10.0, <= 0.11.0
kubernetes >= 0.6.0
'''
with open(temp_file, 'r') as f:
target_payload = f.read()
self.assertEqual(target_payload, golden_payload)
os.remove(temp_file)
def test_func_to_entrypoint(self):
""" Test entrypoint generation """
# prepare
test_data_dir = os.path.join(os.path.dirname(__file__), 'testdata')
# check
generated_codes = _func_to_entrypoint(component_func=sample_component_func)
golden = '''\
def sample_component_func(a: str, b: int) -> float:
result = 3.45
if a == "succ":
result = float(b + 5)
return result
def wrapper_sample_component_func(a,b,_output_file):
output = sample_component_func(str(a),int(b))
import os
os.makedirs(os.path.dirname(_output_file))
with open(_output_file, "w") as data:
data.write(str(output))
import argparse
parser = argparse.ArgumentParser(description="Parsing arguments")
parser.add_argument("a", type=str)
parser.add_argument("b", type=int)
parser.add_argument("_output_file", type=str)
args = vars(parser.parse_args())
if __name__ == "__main__":
wrapper_sample_component_func(**args)
'''
self.assertEqual(golden, generated_codes)
generated_codes = _func_to_entrypoint(component_func=sample_component_func_two)
golden = '''\
def sample_component_func_two(a: str, b: int) -> float:
result = 3.45
if a == 'succ':
result = float(b + 5)
return result
def wrapper_sample_component_func_two(a,b,_output_file):
output = sample_component_func_two(str(a),int(b))
import os
os.makedirs(os.path.dirname(_output_file))
with open(_output_file, "w") as data:
data.write(str(output))
import argparse
parser = argparse.ArgumentParser(description="Parsing arguments")
parser.add_argument("a", type=str)
parser.add_argument("b", type=int)
parser.add_argument("_output_file", type=str)
args = vars(parser.parse_args())
if __name__ == "__main__":
wrapper_sample_component_func_two(**args)
'''
self.assertEqual(golden, generated_codes)
generated_codes = _func_to_entrypoint(component_func=sample_component_func_three)
golden = '''\
def sample_component_func_three() -> float:
return 1.0
def wrapper_sample_component_func_three(_output_file):
output = sample_component_func_three()
import os
os.makedirs(os.path.dirname(_output_file))
with open(_output_file, "w") as data:
data.write(str(output))
import argparse
parser = argparse.ArgumentParser(description="Parsing arguments")
parser.add_argument("_output_file", type=str)
args = vars(parser.parse_args())
if __name__ == "__main__":
wrapper_sample_component_func_three(**args)
'''
self.assertEqual(golden, generated_codes)
generated_codes = _func_to_entrypoint(component_func=sample_component_func_four)
golden = '''\
from typing import NamedTuple
def sample_component_func_four() -> NamedTuple(
'output', [('a', float), ('b', str)]):
from collections import namedtuple
output = namedtuple('output', ['a', 'b'])
return output(1.0, 'test')
def wrapper_sample_component_func_four(_output_files):
outputs = sample_component_func_four()
import os
for _output_file, output in zip(_output_files, outputs):
os.makedirs(os.path.dirname(_output_file))
with open(_output_file, "w") as data:
data.write(str(output))
import argparse
parser = argparse.ArgumentParser(description="Parsing arguments")
parser.add_argument("_output_files", type=str, nargs=2)
args = vars(parser.parse_args())
if __name__ == "__main__":
wrapper_sample_component_func_four(**args)
'''
self.assertEqual(golden, generated_codes)
def test_func_to_entrypoint_python2(self):
""" Test entrypoint generation for python2"""
# prepare
test_data_dir = os.path.join(os.path.dirname(__file__), 'testdata')
# check
generated_codes = _func_to_entrypoint(component_func=sample_component_func_two, python_version='python2')
golden = '''\
def sample_component_func_two(a, b):
result = 3.45
if a == 'succ':
result = float(b + 5)
return result
def wrapper_sample_component_func_two(a,b,_output_file):
output = sample_component_func_two(str(a),int(b))
import os
os.makedirs(os.path.dirname(_output_file))
with open(_output_file, "w") as data:
data.write(str(output))
import argparse
parser = argparse.ArgumentParser(description="Parsing arguments")
parser.add_argument("a", type=str)
parser.add_argument("b", type=int)
parser.add_argument("_output_file", type=str)
args = vars(parser.parse_args())
if __name__ == "__main__":
wrapper_sample_component_func_two(**args)
'''
self.assertEqual(golden, generated_codes)
# hello function is used by the TestCodeGenerator to verify the auto generated python function
def hello():
print("hello")
class TestCodeGenerator(unittest.TestCase):
def test_codegen(self):
""" Test code generator a function"""
codegen = CodeGenerator(indentation=' ')
codegen.begin()
codegen.writeline('def hello():')
codegen.indent()
codegen.writeline('print("hello")')
generated_codes = codegen.end()
self.assertEqual(generated_codes, inspect.getsource(hello))