leetcode-master/problems/0062.不同路径.md

602 lines
16 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<p align="center">
<a href="https://www.programmercarl.com/xunlian/xunlianying.html" target="_blank">
<img src="../pics/训练营.png" width="1000"/>
</a>
<p align="center"><strong><a href="./qita/join.md">参与本项目</a>,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们受益!</strong></p>
# 62.不同路径
[力扣题目链接](https://leetcode.cn/problems/unique-paths/)
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。
问总共有多少条不同的路径?
示例 1
![](https://code-thinking-1253855093.file.myqcloud.com/pics/20210110174033215.png)
* 输入m = 3, n = 7
* 输出28
示例 2
* 输入m = 2, n = 3
* 输出3
解释: 从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向右 -> 向下
2. 向右 -> 向下 -> 向右
3. 向下 -> 向右 -> 向右
示例 3
* 输入m = 7, n = 3
* 输出28
示例 4
* 输入m = 3, n = 3
* 输出6
提示:
* 1 <= m, n <= 100
* 题目数据保证答案小于等于 2 * 10^9
## 算法公开课
**[《代码随想录》算法视频公开课](https://programmercarl.com/other/gongkaike.html)[动态规划中如何初始化很重要!| LeetCode62.不同路径](https://www.bilibili.com/video/BV1ve4y1x7Eu/),相信结合视频再看本篇题解,更有助于大家对本题的理解**。
## 思路
### 深搜
这道题目,刚一看最直观的想法就是用图论里的深搜,来枚举出来有多少种路径。
注意题目中说机器人每次只能向下或者向右移动一步,那么其实**机器人走过的路径可以抽象为一棵二叉树,而叶子节点就是终点!**
如图举例:
![62.不同路径](https://code-thinking-1253855093.file.myqcloud.com/pics/20201209113602700.png)
此时问题就可以转化为求二叉树叶子节点的个数,代码如下:
```CPP
class Solution {
private:
int dfs(int i, int j, int m, int n) {
if (i > m || j > n) return 0; // 越界了
if (i == m && j == n) return 1; // 找到一种方法,相当于找到了叶子节点
return dfs(i + 1, j, m, n) + dfs(i, j + 1, m, n);
}
public:
int uniquePaths(int m, int n) {
return dfs(1, 1, m, n);
}
};
```
**大家如果提交了代码就会发现超时了!**
来分析一下时间复杂度,这个深搜的算法,其实就是要遍历整个二叉树。
这棵树的深度其实就是m+n-1深度按从1开始计算
那二叉树的节点个数就是 2^(m + n - 1) - 1。可以理解深搜的算法就是遍历了整个满二叉树其实没有遍历整个满二叉树只是近似而已
所以上面深搜代码的时间复杂度为O(2^(m + n - 1) - 1),可以看出,这是指数级别的时间复杂度,是非常大的。
### 动态规划
机器人从(0 , 0) 位置出发,到(m - 1, n - 1)终点。
按照动规五部曲来分析:
1. 确定dp数组dp table以及下标的含义
dp[i][j] 表示从0 0出发到(i, j) 有dp[i][j]条不同的路径。
2. 确定递推公式
想要求dp[i][j]只能有两个方向来推导出来即dp[i - 1][j] 和 dp[i][j - 1]。
此时在回顾一下 dp[i - 1][j] 表示啥,是从(0, 0)的位置到(i - 1, j)有几条路径dp[i][j - 1]同理。
那么很自然dp[i][j] = dp[i - 1][j] + dp[i][j - 1]因为dp[i][j]只有这两个方向过来。
3. dp数组的初始化
如何初始化呢首先dp[i][0]一定都是1因为从(0, 0)的位置到(i, 0)的路径只有一条那么dp[0][j]也同理。
所以初始化代码为:
```
for (int i = 0; i < m; i++) dp[i][0] = 1;
for (int j = 0; j < n; j++) dp[0][j] = 1;
```
4. 确定遍历顺序
这里要看一下递推公式dp[i][j] = dp[i - 1][j] + dp[i][j - 1]dp[i][j]都是从其上方和左方推导而来,那么从左到右一层一层遍历就可以了。
这样就可以保证推导dp[i][j]的时候dp[i - 1][j] 和 dp[i][j - 1]一定是有数值的。
5. 举例推导dp数组
如图所示:
![62.不同路径1](https://code-thinking-1253855093.file.myqcloud.com/pics/20201209113631392.png)
以上动规五部曲分析完毕C++代码如下:
```CPP
class Solution {
public:
int uniquePaths(int m, int n) {
vector<vector<int>> dp(m, vector<int>(n, 0));
for (int i = 0; i < m; i++) dp[i][0] = 1;
for (int j = 0; j < n; j++) dp[0][j] = 1;
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
return dp[m - 1][n - 1];
}
};
```
* 时间复杂度O(m × n)
* 空间复杂度O(m × n)
其实用一个一维数组也可以理解是滚动数组就可以了但是不利于理解可以优化点空间建议先理解了二维在理解一维C++代码如下:
```CPP
class Solution {
public:
int uniquePaths(int m, int n) {
vector<int> dp(n);
for (int i = 0; i < n; i++) dp[i] = 1;
for (int j = 1; j < m; j++) {
for (int i = 1; i < n; i++) {
dp[i] += dp[i - 1];
}
}
return dp[n - 1];
}
};
```
* 时间复杂度O(m × n)
* 空间复杂度O(n)
### 数论方法
在这个图中可以看出一共mn的话无论怎么走走到终点都需要 m + n - 2 步。
![62.不同路径](https://code-thinking-1253855093.file.myqcloud.com/pics/20201209113602700-20230310120944078.png)
在这m + n - 2 步中,一定有 m - 1 步是要向下走的,不用管什么时候向下走。
那么有几种走法呢? 可以转化为给你m + n - 2个不同的数随便取m - 1个数有几种取法。
那么这就是一个组合问题了。
那么答案,如图所示:
![62.不同路径2](https://code-thinking-1253855093.file.myqcloud.com/pics/20201209113725324.png)
**求组合的时候要防止两个int相乘溢出** 所以不能把算式的分子都算出来,分母都算出来再做除法。
例如如下代码是不行的。
```CPP
class Solution {
public:
int uniquePaths(int m, int n) {
int numerator = 1, denominator = 1;
int count = m - 1;
int t = m + n - 2;
while (count--) numerator *= (t--); // 计算分子,此时分子就会溢出
for (int i = 1; i <= m - 1; i++) denominator *= i; // 计算分母
return numerator / denominator;
}
};
```
需要在计算分子的时候,不断除以分母,代码如下:
```CPP
class Solution {
public:
int uniquePaths(int m, int n) {
long long numerator = 1; // 分子
int denominator = m - 1; // 分母
int count = m - 1;
int t = m + n - 2;
while (count--) {
numerator *= (t--);
while (denominator != 0 && numerator % denominator == 0) {
numerator /= denominator;
denominator--;
}
}
return numerator;
}
};
```
* 时间复杂度O(m)
* 空间复杂度O(1)
**计算组合问题的代码还是有难度的,特别是处理溢出的情况!**
## 总结
本文分别给出了深搜,动规,数论三种方法。
深搜当然是超时了,顺便分析了一下使用深搜的时间复杂度,就可以看出为什么超时了。
然后在给出动规的方法,依然是使用动规五部曲,这次我们就要考虑如何正确的初始化了,初始化和遍历顺序其实也很重要!
## 其他语言版本
### Java
```java
/**
* 1. 确定dp数组下标含义 dp[i][j] 到每一个坐标可能的路径种类
* 2. 递推公式 dp[i][j] = dp[i-1][j] dp[i][j-1]
* 3. 初始化 dp[i][0]=1 dp[0][i]=1 初始化横竖就可
* 4. 遍历顺序 一行一行遍历
* 5. 推导结果 。。。。。。。。
*
* @param m
* @param n
* @return
*/
public static int uniquePaths(int m, int n) {
int[][] dp = new int[m][n];
//初始化
for (int i = 0; i < m; i++) {
dp[i][0] = 1;
}
for (int i = 0; i < n; i++) {
dp[0][i] = 1;
}
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
dp[i][j] = dp[i-1][j]+dp[i][j-1];
}
}
return dp[m-1][n-1];
}
```
状态压缩
```java
class Solution {
public int uniquePaths(int m, int n) {
// 在二维dp数组中当前值的计算只依赖正上方和正左方因此可以压缩成一维数组。
int[] dp = new int[n];
// 初始化,第一行只能从正左方跳过来,所以只有一条路径。
Arrays.fill(dp, 1);
for (int i = 1; i < m; i ++) {
// 第一列也只有一条路,不用迭代,所以从第二列开始
for (int j = 1; j < n; j ++) {
dp[j] += dp[j - 1]; // dp[j] = dp[j] (正上方)+ dp[j - 1] (正左方)
}
}
return dp[n - 1];
}
}
```
### Python
递归
```python
class Solution:
def uniquePaths(self, m: int, n: int) -> int:
if m == 1 or n == 1:
return 1
return self.uniquePaths(m - 1, n) + self.uniquePaths(m, n - 1)
```
动态规划(版本一)
```python
class Solution:
def uniquePaths(self, m: int, n: int) -> int:
# 创建一个二维列表用于存储唯一路径数
dp = [[0] * n for _ in range(m)]
# 设置第一行和第一列的基本情况
for i in range(m):
dp[i][0] = 1
for j in range(n):
dp[0][j] = 1
# 计算每个单元格的唯一路径数
for i in range(1, m):
for j in range(1, n):
dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
# 返回右下角单元格的唯一路径数
return dp[m - 1][n - 1]
```
动态规划(版本二)
```python
class Solution:
def uniquePaths(self, m: int, n: int) -> int:
# 创建一个一维列表用于存储每列的唯一路径数
dp = [1] * n
# 计算每个单元格的唯一路径数
for j in range(1, m):
for i in range(1, n):
dp[i] += dp[i - 1]
# 返回右下角单元格的唯一路径数
return dp[n - 1]
```
数论
```python
class Solution:
def uniquePaths(self, m: int, n: int) -> int:
numerator = 1 # 分子
denominator = m - 1 # 分母
count = m - 1 # 计数器,表示剩余需要计算的乘积项个数
t = m + n - 2 # 初始乘积项
while count > 0:
numerator *= t # 计算乘积项的分子部分
t -= 1 # 递减乘积项
while denominator != 0 and numerator % denominator == 0:
numerator //= denominator # 约简分子
denominator -= 1 # 递减分母
count -= 1 # 计数器减1继续下一项的计算
return numerator # 返回最终的唯一路径数
```
### Go
```Go
func uniquePaths(m int, n int) int {
dp := make([][]int, m)
for i := range dp {
dp[i] = make([]int, n)
dp[i][0] = 1
}
for j := 0; j < n; j++ {
dp[0][j] = 1
}
for i := 1; i < m; i++ {
for j := 1; j < n; j++ {
dp[i][j] = dp[i-1][j] + dp[i][j-1]
}
}
return dp[m-1][n-1]
}
```
### Javascript
```Javascript
var uniquePaths = function(m, n) {
const dp = Array(m).fill().map(item => Array(n))
for (let i = 0; i < m; ++i) {
dp[i][0] = 1
}
for (let i = 0; i < n; ++i) {
dp[0][i] = 1
}
for (let i = 1; i < m; ++i) {
for (let j = 1; j < n; ++j) {
dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
}
}
return dp[m - 1][n - 1]
};
```
>版本二直接将dp数值值初始化为1
```javascript
/**
* @param {number} m
* @param {number} n
* @return {number}
*/
var uniquePaths = function(m, n) {
let dp = new Array(m).fill(1).map(() => new Array(n).fill(1));
// dp[i][j] 表示到达ij 点的路径数
for (let i=1; i<m; i++) {
for (let j=1; j< n;j++) {
dp[i][j]=dp[i-1][j]+dp[i][j-1];
}
}
return dp[m-1][n-1];
};
```
### TypeScript
```typescript
function uniquePaths(m: number, n: number): number {
/**
dp[i][j]: 到达(i, j)的路径数
dp[0][*]: 1;
dp[*][0]: 1;
...
dp[i][j]: dp[i - 1][j] + dp[i][j - 1];
*/
const dp: number[][] = new Array(m).fill(0).map(_ => []);
for (let i = 0; i < m; i++) {
dp[i][0] = 1;
}
for (let i = 0; i < n; i++) {
dp[0][i] = 1;
}
for (let i = 1; i < m; i++) {
for (let j = 1; j < n; j++) {
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
return dp[m - 1][n - 1];
};
```
### Rust
```Rust
impl Solution {
pub fn unique_paths(m: i32, n: i32) -> i32 {
let (m, n) = (m as usize, n as usize);
let mut dp = vec![vec![1; n]; m];
for i in 1..m {
for j in 1..n {
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
dp[m - 1][n - 1]
}
}
```
### C
```c
//初始化dp数组
int **initDP(int m, int n) {
//动态开辟dp数组
int **dp = (int**)malloc(sizeof(int *) * m);
int i, j;
for(i = 0; i < m; ++i) {
dp[i] = (int *)malloc(sizeof(int) * n);
}
//从00到i,0只有一种走法所以dp[i][0]都是1同理dp[0][j]也是1
for(i = 0; i < m; ++i)
dp[i][0] = 1;
for(j = 0; j < n; ++j)
dp[0][j] = 1;
return dp;
}
int uniquePaths(int m, int n){
//dp数组dp[i][j]代表从dp[0][0]到dp[i][j]有几种走法
int **dp = initDP(m, n);
int i, j;
//到达dp[i][j]只能从dp[i-1][j]和dp[i][j-1]出发
//dp[i][j] = dp[i-1][j] + dp[i][j-1]
for(i = 1; i < m; ++i) {
for(j = 1; j < n; ++j) {
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
}
int result = dp[m-1][n-1];
free(dp);
return result;
}
```
滚动数组解法:
```c
int uniquePaths(int m, int n){
int i, j;
// 初始化dp数组
int *dp = (int*)malloc(sizeof(int) * n);
for (i = 0; i < n; ++i)
dp[i] = 1;
for (j = 1; j < m; ++j) {
for (i = 1; i < n; ++i) {
// dp[i]为二维数组解法中dp[i-1][j]。dp[i-1]为二维数组解法中dp[i][j-1]
dp[i] += dp[i - 1];
}
}
return dp[n - 1];
}
```
### Scala
```scala
object Solution {
def uniquePaths(m: Int, n: Int): Int = {
var dp = Array.ofDim[Int](m, n)
for (i <- 0 until m) dp(i)(0) = 1
for (j <- 1 until n) dp(0)(j) = 1
for (i <- 1 until m; j <- 1 until n) {
dp(i)(j) = dp(i - 1)(j) + dp(i)(j - 1)
}
dp(m - 1)(n - 1)
}
}
```
### c#
```csharp
// 二维数组
public class Solution
{
public int UniquePaths(int m, int n)
{
int[,] dp = new int[m, n];
for (int i = 0; i < m; i++) dp[i, 0] = 1;
for (int j = 0; j < n; j++) dp[0, j] = 1;
for (int i = 1; i < m; i++)
{
for (int j = 1; j < n; j++)
{
dp[i, j] = dp[i - 1, j] + dp[i, j - 1];
}
}
return dp[m - 1, n - 1];
}
}
```
```csharp
// 一维数组
public class Solution
{
public int UniquePaths(int m, int n)
{
int[] dp = new int[n];
for (int i = 0; i < n; i++)
dp[i] = 1;
for (int i = 1; i < m; i++)
for (int j = 1; j < n; j++)
dp[j] += dp[j - 1];
return dp[n - 1];
}
}
```
<p align="center">
<a href="https://programmercarl.com/other/kstar.html" target="_blank">
<img src="../pics/网站星球宣传海报.jpg" width="1000"/>
</a>