451 lines
14 KiB
Markdown
451 lines
14 KiB
Markdown
<p align="center">
|
||
<a href="https://programmercarl.com/other/xunlianying.html" target="_blank">
|
||
<img src="../pics/训练营.png" width="1000"/>
|
||
</a>
|
||
<p align="center"><strong><a href="https://mp.weixin.qq.com/s/tqCxrMEU-ajQumL1i8im9A">参与本项目</a>,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!</strong></p>
|
||
|
||
|
||
# 435. 无重叠区间
|
||
|
||
[力扣题目链接](https://leetcode.cn/problems/non-overlapping-intervals/)
|
||
|
||
给定一个区间的集合,找到需要移除区间的最小数量,使剩余区间互不重叠。
|
||
|
||
注意:
|
||
可以认为区间的终点总是大于它的起点。
|
||
区间 [1,2] 和 [2,3] 的边界相互“接触”,但没有相互重叠。
|
||
|
||
示例 1:
|
||
* 输入: [ [1,2], [2,3], [3,4], [1,3] ]
|
||
* 输出: 1
|
||
* 解释: 移除 [1,3] 后,剩下的区间没有重叠。
|
||
|
||
示例 2:
|
||
* 输入: [ [1,2], [1,2], [1,2] ]
|
||
* 输出: 2
|
||
* 解释: 你需要移除两个 [1,2] 来使剩下的区间没有重叠。
|
||
|
||
示例 3:
|
||
* 输入: [ [1,2], [2,3] ]
|
||
* 输出: 0
|
||
* 解释: 你不需要移除任何区间,因为它们已经是无重叠的了。
|
||
|
||
## 算法公开课
|
||
|
||
**[《代码随想录》算法视频公开课](https://programmercarl.com/other/gongkaike.html):[贪心算法,依然是判断重叠区间 | LeetCode:435.无重叠区间](https://www.bilibili.com/video/BV1A14y1c7E1),相信结合视频在看本篇题解,更有助于大家对本题的理解**。
|
||
|
||
## 思路
|
||
|
||
**相信很多同学看到这道题目都冥冥之中感觉要排序,但是究竟是按照右边界排序,还是按照左边界排序呢?**
|
||
|
||
其实都可以。主要就是为了让区间尽可能的重叠。
|
||
|
||
**我来按照右边界排序,从左向右记录非交叉区间的个数。最后用区间总数减去非交叉区间的个数就是需要移除的区间个数了**。
|
||
|
||
此时问题就是要求非交叉区间的最大个数。
|
||
|
||
这里记录非交叉区间的个数还是有技巧的,如图:
|
||
|
||

|
||
|
||
区间,1,2,3,4,5,6都按照右边界排好序。
|
||
|
||
当确定区间 1 和 区间2 重叠后,如何确定是否与 区间3 也重贴呢?
|
||
|
||
就是取 区间1 和 区间2 右边界的最小值,因为这个最小值之前的部分一定是 区间1 和区间2 的重合部分,如果这个最小值也触达到区间3,那么说明 区间 1,2,3都是重合的。
|
||
|
||
接下来就是找大于区间1结束位置的区间,是从区间4开始。**那有同学问了为什么不从区间5开始?别忘了已经是按照右边界排序的了**。
|
||
|
||
区间4结束之后,再找到区间6,所以一共记录非交叉区间的个数是三个。
|
||
|
||
总共区间个数为6,减去非交叉区间的个数3。移除区间的最小数量就是3。
|
||
|
||
C++代码如下:
|
||
|
||
```CPP
|
||
class Solution {
|
||
public:
|
||
// 按照区间右边界排序
|
||
static bool cmp (const vector<int>& a, const vector<int>& b) {
|
||
return a[1] < b[1];
|
||
}
|
||
int eraseOverlapIntervals(vector<vector<int>>& intervals) {
|
||
if (intervals.size() == 0) return 0;
|
||
sort(intervals.begin(), intervals.end(), cmp);
|
||
int count = 1; // 记录非交叉区间的个数
|
||
int end = intervals[0][1]; // 记录区间分割点
|
||
for (int i = 1; i < intervals.size(); i++) {
|
||
if (end <= intervals[i][0]) {
|
||
end = intervals[i][1];
|
||
count++;
|
||
}
|
||
}
|
||
return intervals.size() - count;
|
||
}
|
||
};
|
||
```
|
||
* 时间复杂度:O(nlog n) ,有一个快排
|
||
* 空间复杂度:O(n),有一个快排,最差情况(倒序)时,需要n次递归调用。因此确实需要O(n)的栈空间
|
||
|
||
大家此时会发现如此复杂的一个问题,代码实现却这么简单!
|
||
|
||
## 补充
|
||
|
||
### 补充(1)
|
||
|
||
左边界排序可不可以呢?
|
||
|
||
也是可以的,只不过 左边界排序我们就是直接求 重叠的区间,count为记录重叠区间数。
|
||
|
||
```CPP
|
||
class Solution {
|
||
public:
|
||
static bool cmp (const vector<int>& a, const vector<int>& b) {
|
||
return a[0] < b[0]; // 改为左边界排序
|
||
}
|
||
int eraseOverlapIntervals(vector<vector<int>>& intervals) {
|
||
if (intervals.size() == 0) return 0;
|
||
sort(intervals.begin(), intervals.end(), cmp);
|
||
int count = 0; // 注意这里从0开始,因为是记录重叠区间
|
||
int end = intervals[0][1]; // 记录区间分割点
|
||
for (int i = 1; i < intervals.size(); i++) {
|
||
if (intervals[i][0] >= end) end = intervals[i][1]; // 无重叠的情况
|
||
else { // 重叠情况
|
||
end = min(end, intervals[i][1]);
|
||
count++;
|
||
}
|
||
}
|
||
return count;
|
||
}
|
||
};
|
||
```
|
||
|
||
其实代码还可以精简一下, 用 intervals[i][1] 替代 end变量,只判断 重叠情况就好
|
||
|
||
```CPP
|
||
class Solution {
|
||
public:
|
||
static bool cmp (const vector<int>& a, const vector<int>& b) {
|
||
return a[0] < b[0]; // 改为左边界排序
|
||
}
|
||
int eraseOverlapIntervals(vector<vector<int>>& intervals) {
|
||
if (intervals.size() == 0) return 0;
|
||
sort(intervals.begin(), intervals.end(), cmp);
|
||
int count = 0; // 注意这里从0开始,因为是记录重叠区间
|
||
for (int i = 1; i < intervals.size(); i++) {
|
||
if (intervals[i][0] < intervals[i - 1][1]) { //重叠情况
|
||
intervals[i][1] = min(intervals[i - 1][1], intervals[i][1]);
|
||
count++;
|
||
}
|
||
}
|
||
return count;
|
||
}
|
||
};
|
||
|
||
```
|
||
|
||
### 补充(2)
|
||
|
||
本题其实和[452.用最少数量的箭引爆气球](https://programmercarl.com/0452.用最少数量的箭引爆气球.html)非常像,弓箭的数量就相当于是非交叉区间的数量,只要把弓箭那道题目代码里射爆气球的判断条件加个等号(认为[0,1][1,2]不是相邻区间),然后用总区间数减去弓箭数量 就是要移除的区间数量了。
|
||
|
||
把[452.用最少数量的箭引爆气球](https://programmercarl.com/0452.用最少数量的箭引爆气球.html)代码稍做修改,就可以AC本题。
|
||
|
||
```CPP
|
||
class Solution {
|
||
public:
|
||
// 按照区间右边界排序
|
||
static bool cmp (const vector<int>& a, const vector<int>& b) {
|
||
return a[1] < b[1]; // 右边界排序
|
||
}
|
||
int eraseOverlapIntervals(vector<vector<int>>& intervals) {
|
||
if (intervals.size() == 0) return 0;
|
||
sort(intervals.begin(), intervals.end(), cmp);
|
||
|
||
int result = 1; // points 不为空至少需要一支箭
|
||
for (int i = 1; i < intervals.size(); i++) {
|
||
if (intervals[i][0] >= intervals[i - 1][1]) {
|
||
result++; // 需要一支箭
|
||
}
|
||
else { // 气球i和气球i-1挨着
|
||
intervals[i][1] = min(intervals[i - 1][1], intervals[i][1]); // 更新重叠气球最小右边界
|
||
}
|
||
}
|
||
return intervals.size() - result;
|
||
}
|
||
};
|
||
```
|
||
|
||
这里按照 左边界排序,或者按照右边界排序,都可以AC,原理是一样的。
|
||
```CPP
|
||
class Solution {
|
||
public:
|
||
// 按照区间左边界排序
|
||
static bool cmp (const vector<int>& a, const vector<int>& b) {
|
||
return a[0] < b[0]; // 左边界排序
|
||
}
|
||
int eraseOverlapIntervals(vector<vector<int>>& intervals) {
|
||
if (intervals.size() == 0) return 0;
|
||
sort(intervals.begin(), intervals.end(), cmp);
|
||
|
||
int result = 1; // points 不为空至少需要一支箭
|
||
for (int i = 1; i < intervals.size(); i++) {
|
||
if (intervals[i][0] >= intervals[i - 1][1]) {
|
||
result++; // 需要一支箭
|
||
}
|
||
else { // 气球i和气球i-1挨着
|
||
intervals[i][1] = min(intervals[i - 1][1], intervals[i][1]); // 更新重叠气球最小右边界
|
||
}
|
||
}
|
||
return intervals.size() - result;
|
||
}
|
||
};
|
||
|
||
```
|
||
|
||
## 其他语言版本
|
||
|
||
|
||
### Java
|
||
```java
|
||
class Solution {
|
||
public int eraseOverlapIntervals(int[][] intervals) {
|
||
Arrays.sort(intervals, (a,b)-> {
|
||
return Integer.compare(a[0],b[0]);
|
||
});
|
||
int count = 1;
|
||
for(int i = 1;i < intervals.length;i++){
|
||
if(intervals[i][0] < intervals[i-1][1]){
|
||
intervals[i][1] = Math.min(intervals[i - 1][1], intervals[i][1]);
|
||
continue;
|
||
}else{
|
||
count++;
|
||
}
|
||
}
|
||
return intervals.length - count;
|
||
}
|
||
}
|
||
```
|
||
|
||
按左边排序,不管右边顺序。相交的时候取最小的右边。
|
||
```java
|
||
class Solution {
|
||
public int eraseOverlapIntervals(int[][] intervals) {
|
||
Arrays.sort(intervals, (a,b)-> {
|
||
return Integer.compare(a[0],b[0]);
|
||
});
|
||
int remove = 0;
|
||
int pre = intervals[0][1];
|
||
for(int i = 1; i < intervals.length; i++) {
|
||
if(pre > intervals[i][0]) {
|
||
remove++;
|
||
pre = Math.min(pre, intervals[i][1]);
|
||
}
|
||
else pre = intervals[i][1];
|
||
}
|
||
return remove;
|
||
}
|
||
}
|
||
```
|
||
|
||
### Python
|
||
贪心 基于左边界
|
||
```python
|
||
class Solution:
|
||
def eraseOverlapIntervals(self, intervals: List[List[int]]) -> int:
|
||
if not intervals:
|
||
return 0
|
||
|
||
intervals.sort(key=lambda x: x[0]) # 按照左边界升序排序
|
||
count = 0 # 记录重叠区间数量
|
||
|
||
for i in range(1, len(intervals)):
|
||
if intervals[i][0] < intervals[i - 1][1]: # 存在重叠区间
|
||
intervals[i][1] = min(intervals[i - 1][1], intervals[i][1]) # 更新重叠区间的右边界
|
||
count += 1
|
||
|
||
return count
|
||
|
||
```
|
||
贪心 基于左边界 把452.用最少数量的箭引爆气球代码稍做修改
|
||
```python
|
||
class Solution:
|
||
def eraseOverlapIntervals(self, intervals: List[List[int]]) -> int:
|
||
if not intervals:
|
||
return 0
|
||
|
||
intervals.sort(key=lambda x: x[0]) # 按照左边界升序排序
|
||
|
||
result = 1 # 不重叠区间数量,初始化为1,因为至少有一个不重叠的区间
|
||
|
||
for i in range(1, len(intervals)):
|
||
if intervals[i][0] >= intervals[i - 1][1]: # 没有重叠
|
||
result += 1
|
||
else: # 重叠情况
|
||
intervals[i][1] = min(intervals[i - 1][1], intervals[i][1]) # 更新重叠区间的右边界
|
||
|
||
return len(intervals) - result
|
||
|
||
|
||
```
|
||
### Go
|
||
```go
|
||
func eraseOverlapIntervals(intervals [][]int) int {
|
||
sort.Slice(intervals, func(i, j int) bool {
|
||
return intervals[i][1] < intervals[j][1]
|
||
})
|
||
res := 1
|
||
for i := 1; i < len(intervals); i++ {
|
||
if intervals[i][0] >= intervals[i-1][1] {
|
||
res++
|
||
} else {
|
||
intervals[i][1] = min(intervals[i - 1][1], intervals[i][1])
|
||
}
|
||
}
|
||
return len(intervals) - res
|
||
}
|
||
func min(a, b int) int {
|
||
if a < b {
|
||
return a
|
||
}
|
||
return b
|
||
}
|
||
```
|
||
|
||
### Javascript
|
||
- 按右边界排序
|
||
```Javascript
|
||
var eraseOverlapIntervals = function(intervals) {
|
||
intervals.sort((a, b) => {
|
||
return a[1] - b[1]
|
||
})
|
||
|
||
let count = 1
|
||
let end = intervals[0][1]
|
||
|
||
for(let i = 1; i < intervals.length; i++) {
|
||
let interval = intervals[i]
|
||
if(interval[0] >= end) {
|
||
end = interval[1]
|
||
count += 1
|
||
}
|
||
}
|
||
|
||
return intervals.length - count
|
||
};
|
||
```
|
||
- 按左边界排序
|
||
```js
|
||
var eraseOverlapIntervals = function(intervals) {
|
||
// 按照左边界升序排列
|
||
intervals.sort((a, b) => a[0] - b[0])
|
||
let count = 1
|
||
let end = intervals[intervals.length - 1][0]
|
||
// 倒序遍历,对单个区间来说,左边界越大越好,因为给前面区间的空间越大
|
||
for(let i = intervals.length - 2; i >= 0; i--) {
|
||
if(intervals[i][1] <= end) {
|
||
count++
|
||
end = intervals[i][0]
|
||
}
|
||
}
|
||
// count 记录的是最大非重复区间的个数
|
||
return intervals.length - count
|
||
}
|
||
```
|
||
|
||
### TypeScript
|
||
|
||
> 按右边界排序,从左往右遍历
|
||
|
||
```typescript
|
||
function eraseOverlapIntervals(intervals: number[][]): number {
|
||
const length = intervals.length;
|
||
if (length === 0) return 0;
|
||
intervals.sort((a, b) => a[1] - b[1]);
|
||
let right: number = intervals[0][1];
|
||
let count: number = 1;
|
||
for (let i = 1; i < length; i++) {
|
||
if (intervals[i][0] >= right) {
|
||
count++;
|
||
right = intervals[i][1];
|
||
}
|
||
}
|
||
return length - count;
|
||
};
|
||
```
|
||
|
||
> 按左边界排序,从左往右遍历
|
||
|
||
```typescript
|
||
function eraseOverlapIntervals(intervals: number[][]): number {
|
||
if (intervals.length === 0) return 0;
|
||
intervals.sort((a, b) => a[0] - b[0]);
|
||
let right: number = intervals[0][1];
|
||
let tempInterval: number[];
|
||
let resCount: number = 0;
|
||
for (let i = 1, length = intervals.length; i < length; i++) {
|
||
tempInterval = intervals[i];
|
||
if (tempInterval[0] >= right) {
|
||
// 未重叠
|
||
right = tempInterval[1];
|
||
} else {
|
||
// 有重叠,移除当前interval和前一个interval中右边界更大的那个
|
||
right = Math.min(right, tempInterval[1]);
|
||
resCount++;
|
||
}
|
||
}
|
||
return resCount;
|
||
};
|
||
```
|
||
|
||
### Scala
|
||
|
||
```scala
|
||
object Solution {
|
||
def eraseOverlapIntervals(intervals: Array[Array[Int]]): Int = {
|
||
var result = 0
|
||
var interval = intervals.sortWith((a, b) => {
|
||
a(1) < b(1)
|
||
})
|
||
var edge = Int.MinValue
|
||
for (i <- 0 until interval.length) {
|
||
if (edge <= interval(i)(0)) {
|
||
edge = interval(i)(1)
|
||
} else {
|
||
result += 1
|
||
}
|
||
}
|
||
result
|
||
}
|
||
}
|
||
```
|
||
|
||
### Rust
|
||
|
||
```Rust
|
||
impl Solution {
|
||
pub fn erase_overlap_intervals(intervals: Vec<Vec<i32>>) -> i32 {
|
||
if intervals.is_empty() {
|
||
return 0;
|
||
}
|
||
intervals.sort_by_key(|interval| interval[1]);
|
||
let mut count = 1;
|
||
let mut end = intervals[0][1];
|
||
for v in intervals.iter().skip(1) {
|
||
if end <= v[0] {
|
||
end = v[1];
|
||
count += 1;
|
||
}
|
||
}
|
||
|
||
(intervals.len() - count) as i32
|
||
}
|
||
}
|
||
```
|
||
|
||
|
||
<p align="center">
|
||
<a href="https://programmercarl.com/other/kstar.html" target="_blank">
|
||
<img src="../pics/网站星球宣传海报.jpg" width="1000"/>
|
||
</a>
|
||
|